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PREFACE

MOTIVATION
I wrote the first and second editions because I love the mathematical beauty of 
signal and system analysis. That has not changed. The motivation for the third edi-
tion is to further refine the book structure in light of reviewers, comments, correct 
a few errors from the second edition and significantly rework the exercises.

AUDIENCE
This book is intended to cover a two-semester course sequence in the basics of 
signal and system analysis during the junior or senior year. It can also be used (as 
I have used it) as a book for a quick one-semester Master’s-level review of trans-
form methods as applied to linear systems.

CHANGES FROM THE SECOND EDITION

1.	 In response to reviewers, comments, two chapters from the second edition have 
been omitted: Communication Systems and State-Space Analysis. There seemed 
to be very little if any coverage of these topics in actual classes.

2.	 The second edition had 550 end-of-chapter exercises in 16 chapters. The third 
edition has 710 end-of-chapter exercises in 14 chapters.

OVERVIEW
Except for the omission of two chapters, the third edition structure is very similar to 
the second edition. The book begins with mathematical methods for describing signals 
and systems, in both continuous and discrete time. I introduce the idea of a transform 
with the continuous-time Fourier series, and from that base move to the Fourier trans-
form as an extension of the Fourier series to aperiodic signals. Then I do the same for 
discrete-time signals. I introduce the Laplace transform both as a generalization of the 
continuous-time Fourier transform for unbounded signals and unstable systems and 
as a powerful tool in system analysis because of its very close association with the ei-
genvalues and eigenfunctions of continuous-time linear systems. I take a similar path 
for discrete-time systems using the z transform. Then I address sampling, the relation 
between continuous and discrete time. The rest of the book is devoted to applications 
in frequency-response analysis, feedback systems, analog and digital filters. Through-
out the book I present examples and introduce MATLAB functions and operations to 
implement the methods presented. A chapter-by-chapter summary follows.

CHAPTER SUMMARIES

CHAPTER 1
Chapter 1 is an introduction to the general concepts involved in signal and system 
analysis without any mathematical rigor. It is intended to motivate the student by 

xii
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xiiiPreface

demonstrating the ubiquity of signals and systems in everyday life and the impor-
tance of understanding them.

CHAPTER 2
Chapter 2 is an exploration of methods of mathematically describing continuous- 
time signals of various kinds. It begins with familiar functions, sinusoids and 
exponentials and then extends the range of signal-describing functions to include 
continuous-time singularity functions (switching functions). Like most, if not all, 
signals and systems textbooks, I define the unit-step, the signum, the unit-impulse 
and the unit-ramp functions. In addition to these I define a unit rectangle and a 
unit periodic impulse function. The unit periodic impulse function, along with 
convolution, provides an especially compact way of mathematically describing 
arbitrary periodic signals.

After introducing the new continuous-time signal functions, I cover the 
common types of signal transformations, amplitude scaling, time shifting, time 
scaling, differentiation and integration and apply them to the signal functions. 
Then I cover some characteristics of signals that make them invariant to certain 
transformations, evenness, oddness and periodicity, and some of the implications 
of these signal characteristics in signal analysis. The last section is on signal 
energy and power.

CHAPTER 3
Chapter 3 follows a path similar to Chapter 2 except applied to discrete-time 
signals instead of continuous-time signals. I introduce the discrete-time sinu-
soid and exponential and comment on the problems of determining period of a 
discrete-time sinusoid. This is the first exposure of the student to some of the 
implications of sampling. I define some discrete-time signal functions analo-
gous to continuous-time singularity functions. Then I explore amplitude scaling, 
time shifting, time scaling, differencing and accumulation for discrete-time signal 
functions pointing out the unique implications and problems that occur, especially 
when time scaling discrete-time functions. The chapter ends with definitions and 
discussion of signal energy and power for discrete-time signals.

CHAPTER 4
This chapter addresses the mathematical description of systems. First I cover 
the most common forms of classification of systems, homogeneity, additivity, 
linearity, time invariance, causality, memory, static nonlinearity and invertibility. 
By example I present various types of systems that have, or do not have, these 
properties and how to prove various properties from the mathematical description 
of the system.

CHAPTER 5
This chapter introduces the concepts of impulse response and convolution as 
components in the systematic analysis of the response of linear, time-invariant 
systems. I present the mathematical properties of continuous-time convolution 
and a graphical method of understanding what the convolution integral says. I 
also show how the properties of convolution can be used to combine subsystems 
that are connected in cascade or parallel into one system and what the impulse 
response of the overall system must be. Then I introduce the idea of a transfer 
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xiv Preface

function by finding the response of an LTI system to complex sinusoidal exci-
tation. This section is followed by an analogous coverage of discrete-time impulse 
response and convolution.

CHAPTER 6
This is the beginning of the student’s exposure to transform methods. I begin 
by graphically introducing the concept that any continuous-time periodic 
signal with engineering usefulness can be expressed by a linear combination of 
continuous-time sinusoids, real or complex. Then I formally derive the Fourier 
series using the concept of orthogonality to show where the signal description as 
a function of discrete harmonic number (the harmonic function) comes from. I 
mention the Dirichlet conditions to let the student know that the continuous-time 
Fourier series applies to all practical continuous-time signals, but not to all 
imaginable continuous-time signals.

Then I explore the properties of the Fourier series. I have tried to make the 
Fourier series notation and properties as similar as possible and analogous to the 
Fourier transform, which comes later. The harmonic function forms a “Fourier 
series pair” with the time function. In the first edition I used a notation for har-
monic function in which lower-case letters were used for time-domain quantities 
and upper-case letters for their harmonic functions. This unfortunately caused 
some confusion because continuous- and discrete-time harmonic functions 
looked the same. In this edition I have changed the harmonic function notation 
for continuous-time signals to make it easily distinguishable. I also have a section 
on the convergence of the Fourier series illustrating the Gibb’s phenomenon at 
function discontinuities. I encourage students to use tables and properties to find 
harmonic functions and this practice prepares them for a similar process in find-
ing Fourier transforms and later Laplace and z transforms.

The next major section of Chapter 6 extends the Fourier series to the 
Fourier transform. I introduce the concept by examining what happens to a 
continuous-time Fourier series as the period of the signal approaches infinity 
and then define and derive the continuous-time Fourier transform as a gener-
alization of the continuous-time Fourier series. Following that I cover all the 
important properties of the continuous-time Fourier transform. I have taken an 
“ecumenical” approach to two different notational conventions that are commonly 
seen in books on signals and systems, control systems, digital signal processing, 
communication systems and other applications of Fourier methods such as image 
processing and Fourier optics: the use of either cyclic frequency, f or radian fre-
quency, ω. I use both and emphasize that the two are simply related through a 
change of variable. I think this better prepares students for seeing both forms in 
other books in their college and professional careers.

CHAPTER 7
This chapter introduces the discrete-time Fourier series (DTFS), the discrete Fou-
rier transform (DFT) and the discrete-time Fourier transform (DTFT), deriving 
and defining them in a manner analogous to Chapter 6. The DTFS and the DFT 
are almost identical. I concentrate on the DFT because of its very wide use in 
digital signal processing. I emphasize the important differences caused by the 
differences between continuous- and discrete-time signals, especially the finite 
summation range of the DFT as opposed to the (generally) infinite summation 
range in the CTFS. I also point out the importance of the fact that the DFT relates 
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a finite set of numbers to another finite set of numbers, making it amenable to 
direct numerical machine computation. I discuss the fast Fourier transform as a 
very efficient algorithm for computing the DFT. As in Chapter 6, I use both cyclic 
and radian frequency forms, emphasizing the relationships between them. I use F 
and Ω for discrete-time frequencies to distinguish them from f and ω, which were 
used in continuous time. Unfortunately, some authors reverse these symbols. My 
usage is more consistent with the majority of signals and systems texts. This is 
another example of the lack of standardization of notation in this area. The last 
major section is a comparison of the four Fourier methods. I emphasize particu-
larly the duality between sampling in one domain and periodic repetition in the 
other domain.

CHAPTER 8
This chapter introduces the Laplace transform. I approach the Laplace trans-
form from two points of view, as a generalization of the Fourier transform to a 
larger class of signals and as result which naturally follows from the excitation 
of a linear, time-invariant system by a complex exponential signal. I begin by 
defining the bilateral Laplace transform and discussing significance of the re-
gion of convergence. Then I define the unilateral Laplace transform. I derive all 
the important properties of the Laplace transform. I fully explore the method 
of partial-fraction expansion for finding inverse transforms and then show 
examples of solving differential equations with initial conditions using the uni-
lateral form.

CHAPTER 9
This chapter introduces the z transform. The development parallels the devel-
opment of the Laplace transform except applied to discrete-time signals and 
systems. I initially define a bilateral transform and discuss the region of con-
vergence. Then I define a unilateral transform. I derive all the important prop-
erties and demonstrate the inverse transform using partial-fraction expansion 
and the solution of difference equations with initial conditions. I also show 
the relationship between the Laplace and z transforms, an important idea in 
the approximation of continuous-time systems by discrete-time systems in 
Chapter 14.

CHAPTER 10
This is the first exploration of the correspondence between a continuous-time 
signal and a discrete-time signal formed by sampling it. The first section covers 
how sampling is usually done in real systems using a sample-and-hold and an A/D 
converter. The second section starts by asking the question of how many samples 
are enough to describe a continuous-time signal. Then the question is answered 
by deriving the sampling theorem. Then I discuss interpolation methods, theoret-
ical and practical, the special properties of bandlimited periodic signals. I do a 
complete development of the relationship between the CTFT of a continuous-time 
signal and DFT of a finite-length set of samples taken from it. Then I show how 
the DFT can be used to approximate the CTFT of an energy signal or a periodic 
signal. The next major section explores the use of the DFT in numerically approx-
imating various common signal-processing operations.
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CHAPTER 11
This chapter covers various aspects of the use of the CTFT and DTFT in fre-
quency response analysis. The major topics are ideal filters, Bode diagrams, prac-
tical passive and active continuous-time filters and basic discrete-time filters.

CHAPTER 12
This chapter is on the application of the Laplace transform including block dia-
gram representation of systems in the complex frequency domain, system stability, 
system interconnections, feedback systems including root locus, system responses 
to standard signals and lastly standard realizations of continuous-time systems.

CHAPTER 13
This chapter is on the application of the z transform including block diagram 
representation of systems in the complex frequency domain, system stability, sys-
tem interconnections, feedback systems including root-locus, system responses to 
standard signals, sampled-data systems and standard realizations of discrete-time 
systems.

CHAPTER 14
This chapter covers the analysis and design of some of the most common types 
of practical analog and digital filters. The analog filter types are Butterworth, 
Chebyshev Types 1 and 2 and Elliptic (Cauer) filters. The section on digital filters 
covers the most common types of techniques for simulation of analog filters includ-
ing, impulse- and step-invariant, finite difference, matched z transform, direct sub-
stitution, bilinear z transform, truncated impulse response and Parks-McClellan 
numerical design.

APPENDICES
There are seven appendices on useful mathematical formulae, tables of the four 
Fourier transforms, Laplace transform tables and z transform tables.

CONTINUITY
The book is structured so as to facilitate skipping some topics without loss of 
continuity. Continuous-time and discrete-time topics are covered alternately and 
continuous-time analysis could be covered without reference to discrete time. 
Also, any or all of the last six chapters could be omitted in a shorter course.

REVIEWS AND EDITING
This book owes a lot to the reviewers, especially those who really took time and 
criticized and suggested improvements. I am indebted to them. I am also indebted 
to the many students who have endured my classes over the years. I believe that 
our relationship is more symbiotic than they realize. That is, they learn signal and 
system analysis from me and I learn how to teach signal and system analysis from 
them. I cannot count the number of times I have been asked a very perceptive 
question by a student that revealed not only that the students were not understand-
ing a concept but that I did not understand it as well as I had previously thought.

Preface
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WRITING STYLE
Every author thinks he has found a better way to present material so that students 
can grasp it and I am no different. I have taught this material for many years and 
through the experience of grading tests have found what students generally do and 
do not grasp. I have spent countless hours in my office one-on-one with students 
explaining these concepts to them and, through that experience, I have found 
out what needs to be said. In my writing I have tried to simply speak directly to 
the reader in a straightforward conversational way, trying to avoid off-putting 
formality and, to the extent possible, anticipating the usual misconceptions and 
revealing the fallacies in them. Transform methods are not an obvious idea and, 
at first exposure, students can easily get bogged down in a bewildering morass of 
abstractions and lose sight of the goal, which is to analyze a system’s response to 
signals. I have tried (as every author does) to find the magic combination of ac-
cessibility and mathematical rigor because both are important. I think my writing 
is clear and direct but you, the reader, will be the final judge of whether or not 
that is true.

EXERCISES
Each chapter has a group of exercises along with answers and a second group of 
exercises without answers. The first group is intended more or less as a set of 
“drill” exercises and the second group as a set of more challenging exercises.

CONCLUDING REMARKS
As I indicated in the preface to first and second editions, I welcome any and all 
criticism, corrections and suggestions. All comments, including ones I disagree 
with and ones which disagree with others, will have a constructive impact on the 
next edition because they point out a problem. If something does not seem right 
to you, it probably will bother others also and it is my task, as an author, to find 
a way to solve that problem. So I encourage you to be direct and clear in any re-
marks about what you believe should be changed and not to hesitate to mention 
any errors you may find, from the most trivial to the most significant.

Michael J. Roberts, Professor 
Emeritus Electrical and Computer Engineering 

University of Tennessee at Knoxville 
mjr@utk.edu

Preface
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	 C H A P T E R 	 1
Introduction
1.1  SIGNALS AND SYSTEMS DEFINED
Any time-varying physical phenomenon that is intended to convey information is a 
signal. Examples of signals are the human voice, sign language, Morse code, traffic 
signals, voltages on telephone wires, electric fields emanating from radio or television 
transmitters, and variations of light intensity in an optical fiber on a telephone or com-
puter network. Noise is like a signal in that it is a time-varying physical phenomenon, 
but usually it does not carry useful information and is considered undesirable.

Signals are operated on by systems. When one or more excitations or input signals 
are applied at one or more system inputs, the system produces one or more responses 
or output signals at its outputs. Figure 1.1 is a block diagram of a single-input, 
single-output system.

SystemInput OutputExcitation
or Input Signal

Response
or Output Signal

Figure 1.1
Block diagram of a single-input, single-output system

Transmitter Channel Receiver
Information

Signal
Noisy

Information
Signal

Noise NoiseNoise

Figure 1.2
A communication system

In a communication system, a transmitter produces a signal and a receiver acquires 
it. A channel is the path a signal takes from a transmitter to a receiver. Noise is 
inevitably introduced into the transmitter, channel and receiver, often at multiple points 
(Figure 1.2). The transmitter, channel and receiver are all components or subsystems of 
the overall system. Scientific instruments are systems that measure a physical phenom-
enon (temperature, pressure, speed, etc.) and convert it to a voltage or current, a sig-
nal. Commercial building control systems (Figure 1.3), industrial plant control systems 
(Figure 1.4), modern farm machinery (Figure 1.5), avionics in airplanes, ignition and 
fuel pumping controls in automobiles, and so on are all systems that operate on signals.
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C h a p t e r  1     Introduction2

Figure 1.3
Modern office buildings
© Vol. 43 PhotoDisc/Getty

Figure 1.4
Typical industrial plant control room
© Royalty-Free/Punchstock
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1.2  Types of Signals 3

The term system even encompasses things such as the stock market, government, 
weather, the human body and the like. They all respond when excited. Some systems 
are readily analyzed in detail, some can be analyzed approximately, but some are so 
complicated or difficult to measure that we hardly know enough to understand them.

1.2  TYPES OF SIGNALS
There are several broad classifications of signals: continuous-time, discrete-time, 
continuous-value, discrete-value, random and nonrandom. A continuous-time sig-
nal is defined at every instant of time over some time interval. Another common name 
for some continuous-time signals is analog signal, in which the variation of the signal 
with time is analogous (proportional) to some physical phenomenon. All analog sig-
nals are continuous-time signals but not all continuous-time signals are analog signals 
(Figure 1.6 through Figure 1.8). 

Sampling a signal is acquiring values from a continuous-time signal at discrete 
points in time. The set of samples forms a discrete-time signal. A discrete-time signal 

Figure 1.5
Modern farm tractor with enclosed cab
© Royalty-Free/Corbis

Figure 1.6
Examples of continuous-time and discrete-time signals

n

x[n]
Discrete-Time

Continuous-Value
Signal

t

x(t)
Continuous-Time
Continuous-Value

Signal
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C h a p t e r  1     Introduction4

can also be created by an inherently discrete-time system that produces signal values 
only at discrete times (Figure 1.6).

A continuous-value signal is one that may have any value within a continuum of 
allowed values. In a continuum any two values can be arbitrarily close together. The 
real numbers form a continuum with infinite extent. The real numbers between zero 
and one form a continuum with finite extent. Each is a set with infinitely many mem-
bers (Figure 1.6 through Figure 1.8).

A discrete-value signal can only have values taken from a discrete set. In a discrete 
set of values the magnitude of the difference between any two values is greater than 
some positive number. The set of integers is an example. Discrete-time signals are 
usually transmitted as digital signals, a sequence of values of a discrete-time signal 
in the form of digits in some encoded form. The term digital is also sometimes used 
loosely to refer to a discrete-value signal that has only two possible values. The digits 
in this type of digital signal are transmitted by signals that are continuous-time. In 
this case, the terms continuous-time and analog are not synonymous. A digital signal 
of this type is a continuous-time signal but not an analog signal because its variation 
of value with time is not directly analogous to a physical phenomenon (Figure 1.6 
through Figure 1.8).

A random signal cannot be predicted exactly and cannot be described by any math-
ematical function. A deterministic signal can be mathematically described. A com-
mon name for a random signal is noise (Figure 1.6 through Figure 1.8).

In practical signal processing it is very common to acquire a signal for processing 
by a computer by sampling, quantizing and encoding it (Figure 1.9). The original 
signal is a continuous-value, continuous-time signal. Sampling acquires its values at 
discrete times and those values constitute a continuous-value, discrete-time signal. 
Quantization approximates each sample as the nearest member of a finite set of dis-
crete values, producing a discrete-value, discrete-time signal. Each signal value in the 
set of discrete values at discrete times is converted to a sequence of rectangular pulses 
that encode it into a binary number, creating a discrete-value, continuous-time signal, 
commonly called a digital signal. The steps illustrated in Figure 1.9 are usually carried 
out by a single device called an analog-to-digital converter (ADC).

Figure 1.8
Examples of noise and a noisy digital signal

Noisy Digital Signal

Continuous-Time
Continuous-Value

Random Signal

t

x(t) x(t)

Noise

t 

Figure 1.7
Examples of continuous-time, discrete-value signals
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1.2  Types of Signals 5

Figure 1.9
Sampling, quantization and encoding of a signal to illustrate various signal types
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Figure 1.10
Asynchronous serial binary ASCII-encoded voltage signal for the 
word SIGNAL
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Serial Binary Voltage Signal for the ASCII Message “SIGNAL”
S I G N A L

One common use of binary digital signals is to send text messages using the 
American Standard Code for Information Interchange (ASCII). The letters of the al-
phabet, the digits 0–9, some punctuation characters and several nonprinting control 
characters, for a total of 128 characters, are all encoded into a sequence of 7 binary 
bits. The 7 bits are sent sequentially, preceded by a start bit and followed by 1 or 2 
stop bits for synchronization purposes. Typically, in direct-wired connections between 
digital equipment, the bits are represented by a higher voltage (2 to 5 V) for a 1 and a 
lower voltage level (around 0 V) for a 0. In an asynchronous transmission using one 
start and one stop bit, sending the message SIGNAL, the voltage versus time would 
look as illustrated in Figure 1.10.
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C h a p t e r  1     Introduction6

In 1987 ASCII was extended to Unicode. In Unicode the number of bits used to 
represent a character can be 8, 16, 24 or 32 and more than 120,000 characters are cur-
rently encoded in modern and historic language characters and multiple symbol sets.

Digital signals are important in signal analysis because of the spread of digital 
systems. Digital signals often have better immunity to noise than analog signals. In 
binary signal communication the bits can be detected very cleanly until the noise gets 
very large. The detection of bit values in a stream of bits is usually done by comparing 
the signal value at a predetermined bit time with a threshold. If it is above the thresh-
old it is declared a 1 and if it is below the threshold it is declared a 0. In Figure 1.11, 
the x’s mark the signal value at the detection time, and when this technique is applied 
to the noisy digital signal, one of the bits is incorrectly detected. But when the signal 
is processed by a filter, all the bits are correctly detected. The filtered digital signal 
does not look very clean in comparison with the noiseless digital signal, but the bits 
can still be detected with a very low probability of error. This is the basic reason that 
digital signals can have better noise immunity than analog signals. An introduction to 
the analysis and design of filters is presented in Chapters 11 and 15.

In this text we will consider both continuous-time and discrete-time signals, but 
we will (mostly) ignore the effects of signal quantization and consider all signals to be 
continuous-value. Also, we will not directly consider the analysis of random signals, 
although random signals will sometimes be used in illustrations.

The first signals we will study are continuous-time signals. Some continuous-time 
signals can be described by continuous functions of time. A signal x(t ) might be 
described by a function x(t ) = 50 sin (200 πt ) of continuous time t. This is an exact 
description of the signal at every instant of time. The signal can also be described 
graphically (Figure 1.12).

Many continuous-time signals are not as easy to describe mathematically. Consider 
the signal in Figure 1.13. Waveforms like the one in Figure 1.13 occur in various types of 
instrumentation and communication systems. With the definition of some signal functions 
and an operation called convolution, this signal can be compactly described, analyzed 
and manipulated mathematically. Continuous-time signals that can be described by math-
ematical functions can be transformed into another domain called the frequency domain 
through the continuous-time Fourier transform. In this context, transformation means 
transformation of a signal to the frequency domain. This is an important tool in signal 
analysis, which allows certain characteristics of the signal to be more clearly observed 

Figure 1.11
Use of a filter to reduce bit error rate in a digital signal
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1.2  Types of Signals 7

and more easily manipulated than in the time domain. (In the frequency domain, signals 
are described in terms of the frequencies they contain.) Without frequency-domain analy-
sis, design and analysis of many systems would be considerably more difficult.

Discrete-time signals are only defined at discrete points in time. Figure 1.14 
illustrates some discrete-time signals.

Figure 1.12
A continuous-time signal described by a 
mathematical function
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Figure 1.13
A second continuous-time signal
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Figure 1.14
Some discrete-time signals
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So far all the signals we have considered have been described by functions of time. 
An important class of “signals” is functions of space instead of time: images. Most 
of the theories of signals, the information they convey and how they are processed by 
systems in this text will be based on signals that are a variation of a physical phenome-
non with time. But the theories and methods so developed also apply, with only minor 
modifications, to the processing of images. Time signals are described by the variation 
of a physical phenomenon as a function of a single independent variable, time. Spa-
tial signals, or images, are described by the variation of a physical phenomenon as a 
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C h a p t e r  1     Introduction8

function of two orthogonal, independent, spatial variables, conventionally referred 
to as x and y. The physical phenomenon is most commonly light or something that 
affects the transmission or reflection of light, but the techniques of image processing 
are also applicable to anything that can be mathematically described by a function of 
two independent variables.

Historically the practical application of image-processing techniques has lagged 
behind the application of signal-processing techniques because the amount of infor-
mation that has to be processed to gather the information from an image is typically 
much larger than the amount of information required to get the information from a time 
signal. But now image processing is increasingly a practical technique in many situ-
ations. Most image processing is done by computers. Some simple image-processing 
operations can be done directly with optics and those can, of course, be done at very 
high speeds (at the speed of light!). But direct optical image processing is very limited 
in its flexibility compared with digital image processing on computers. 

Figure 1.15 shows two images. On the left is an unprocessed X-ray image of a 
carry-on bag at an airport checkpoint. On the right is the same image after being pro-
cessed by some image-filtering operations to reveal the presence of a weapon. This text 
will not go into image processing in any depth but will use some examples of image 
processing to illustrate concepts in signal processing.

An understanding of how signals carry information and how systems process sig-
nals is fundamental to multiple areas of engineering. Techniques for the analysis of sig-
nals processed by systems are the subject of this text. This material can be considered 
as an applied mathematics text more than a text covering the building of useful devices, 
but an understanding of this material is very important for the successful design of 
useful devices. The material that follows builds from some fundamental definitions and 
concepts to a full range of analysis techniques for continuous-time and discrete-time 
signals in systems.

1.3  EXAMPLES OF SYSTEMS
There are many different types of signals and systems. A few examples of systems 
are discussed next. The discussion is limited to the qualitative aspects of the system 
with some illustrations of the behavior of the system under certain conditions. These 
systems will be revisited in Chapter 4 and discussed in a more detailed and quantitative 
way in the material on system modeling.

Figure 1.15
An example of image processing to reveal information
(Original X-ray image and processed version provided by the Imaging, Robotics and Intelligent Systems 
(IRIS) Laboratory of the Department of Electrical and Computer Engineering at the University of 
Tennessee, Knoxville.)
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1.3  Examples of Systems 9

A MECHANICAL SYSTEM
A man bungee jumps off a bridge over a river. Will he get wet? The answer depends 
on several factors:

	1.	 The man’s height and weight
	2.	 The height of the bridge above the water
	3.	 The length and springiness of the bungee cord

When the man jumps off the bridge he goes into free fall caused by the force due 
to gravitational attraction until the bungee cord extends to its full unstretched length. 
Then the system dynamics change because there is now another force on the man, the 
bungee cord’s resistance to stretching, and he is no longer in free fall. We can write 
and solve a differential equation of motion and determine how far down the man falls 
before the bungee cord pulls him back up. The differential equation of motion is a 
mathematical model of this mechanical system. If the man weighs 80 kg and is 1.8 m 
tall, and if the bridge is 200 m above the water level and the bungee cord is 30 m long 
(unstretched) with a spring constant of 11 N/m, the bungee cord is fully extended be-
fore stretching at t = 2.47 s. The equation of motion, after the cord starts stretching, is 

	 x(t ) = − 16.85 sin (0.3708t ) − 95.25 cos (0.3708t )  + 101.3,  t > 2.47.	 (1.1)

Figure 1.16 shows his position versus time for the first 15 seconds. From the graph it 
seems that the man just missed getting wet.

Figure 1.16
Man’s vertical position versus time (bridge level is zero)
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A FLUID SYSTEM
A fluid system can also be modeled by a differential equation. Consider a cylindrical 
water tank being fed by an input flow of water, with an orifice at the bottom through 
which flows the output (Figure 1.17). 

The flow out of the orifice depends on the height of the water in the tank. The vari-
ation of the height of the water depends on the input flow and the output flow. The rate 
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